

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO ESCUELA NACIONAL DE ESTUDIOS SUPERIORES UNIDAD MORELIA

PLAN DE ESTUDIOS DE LA LICENCIATURA EN CIENCIA DE MATERIALES SUSTENTABLES

Programa de la asignatura

Ciencia de Materiales I

Clave:	Semestre:	Campo de conocimiento:				No. Créditos:
	3°			8		
Carácter: Obligatoria			Horas		Horas por semana	Total de Horas
Tinas Taárica Dráctica			Teoría:	Práctica:		
Tipo: Teórico-Práctica		3	2	5	80	
Modalidad: Laboratorio			Duración del programa: 16 semanas			

Seriación: No () Sí (x) Obligatoria (x) Indicativa ()

Asignatura antecedente: Ninguna

Asignatura subsecuente: Ciencia de Materiales II

Objetivo general:

Describir la estructura y comportamiento de los materiales.

Objetivos específicos:

- 1. Identificar la estructura microscópica de los materiales.
- 2. Analizar los diversos tipos de materiales.
- 3. Caracterizar a los materiales.

Índice Temático

Unidad	Unidad Tema		Horas		
Unidad	Tema	Teóricas	Prácticas		
1	Introducción	1	0		
2	Estructura atómica de los elementos	3	4		
3	Tipos de enlaces	6	0		
4	Estructura cristalina y defectos	7	7		
5	Materiales metálicos	10	7		
6	Materiales cerámicos y semiconductores	12	7		
7	Materiales poliméricos	9	7		
	Total de horas:	48	32		
	Suma total de horas:	80			

Contenido Temático				
Unidad	Temas y subtemas			
1	Introducción 1.1. Que es la ciencia e ingeniería de materiales. 1.2. Historia de los materiales.			
2	Estructura atómica de los elementos 2.1. El electrón, ondas y partículas. 2.2. Mecánica ondulatoria, vector de onda, momento y energía. Ecuación de Schrödinger. 2.3. El átomo de hidrógeno. Números cuánticos, espín y niveles de energía. 2.4. Principio de exclusión de Pauli, átomos con más de un electrón.			
3	Tipos de enlaces 3.1. Enlace metálico. 3.2. Enlace iónico. 3.3. Enlace covalente. 3.4. Enlaces débiles, van der Waals, puente de hidrógeno.			
4	Estructura cristalina y defectos 4.1. Materiales cristalinos y amorfos. 4.2. Celda unitaria. Redes de Bravais, índices de Miller. 4.3. Celdas cúbicas, hexagonales y tetragonales. Sistemas cúbicos y hexagonales. 4.4. Ley de Bragg. 4.5. Defectos puntuales, lineales, bidimensionales y tridimensionales.			
5	Materiales metálicos 5.1. Conductividad eléctrica en metales. 5.2. Conductividad térmica. 5.3. Procesamiento de metales. 5.4 Materiales magnéticos. Dominios.			
6	Materiales cerámicos y semiconductores 6.1. Materiales iónicos. 6.2. Bandas de energía. 6.3. Semiconductores intrínsecos y extrínsecos. Conductividad eléctrica en semiconductores. 6.4. Dispositivos. El diodo y el transistor. 6.5. Propiedades ópticas.			
7	Materiales poliméricos 7.1. Monómeros y polímeros. 7.2. Homopolímeros, copolímeros y entrecruzamiento. Cargas en polímeros. 7.3. Materiales compuestos, metal-polímero, cerámico-polímero y metal-cerámico.			

Bibliografía básica:

Askeland, D.R. (2004). Ciencia e ingeniería de los materiales. EUA: Thomson International.

Smith, W.F., Gil, J.M. y Gil, F.J.M. (1993). Fundamentos de la ciencia e ingeniería de materiales. EUA: McGraw-Hill.

González Viñas, W. y Mancini, H.L. (2003). Ciencia de materiales. España: Ariel.

Navarro Chávez, O. (Coordinador). (2006). Ciencia de materiales y nanotecnología. México: CIDEM, UNAM, UMSNH.

Mari, E. (1998). Los materiales cerámicos. Argentina: Alsina.

Adler, R.B., Smith, A.C. y Longini R.L. (1981). *Introducción a la física de los semiconductores*. España: Reverté.

Ureta Barron, E. (1989). Polímeros; estructura, propiedades y aplicaciones. México: Limusa.

Bibliografía complementaria:

Shackelford, J.F. (2006). *Introducción a la ciencia de materiales para ingenieros*. México: Pearson Educación. Kittel, C. (1997). *Introducción a la física del estado sólido*. (3ª ed.). Barcelona: Reverté. McKelvey, J.P. (1980). *Física del estado sólido y de semiconductores*. México: Limusa.

Callister, W.D. Jr. (2006). *Materials science and engineering, an introduction.* USA: John Wiley & Sons. Anderson, J.C., Leaver, K.D., Leevers, P. & Rawlings, R.D. (2003). *Materials science for engineers.* (5th ed.). United Kingdom: Nelson Thornes Ltd.

Sugerencias didácticas:		Mecanismos de evaluación del aprendizaje de los	
Exposición oral	(x)	alumnos:	
Exposición audiovisual	(x)	Exámenes parciales	(x)
Ejercicios dentro de clase	(x)	Examen final escrito	(x)
Ejercicios fuera del aula	(x)	Trabajos y tareas fuera del aula	(x)
Seminarios	(x)	Exposición de seminarios por los alumnos	(x)
Lecturas obligatorias	(x)	Participación en clase	(x)
Trabajo de investigación	(x)	Asistencia	(x)
Prácticas de taller o laboratorio	(x)	Seminario	(x)
Prácticas de campo	()	Otras: Bitácora, reporte del trabajo de	
Uso de tecnologías de la información y		investigación	(x)
comunicación (videoconferencias,			
documentales, entre otros)	(x)		
Otras: Aprendizaje basado en proyectos	(x)		

Perfil profesiográfico:

Físico, Químico o Ingeniero Químico, de preferencia con Doctorado en un área afín. Con experiencia docente.