

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO ESCUELA NACIONAL DE ESTUDIOS SUPERIORES UNIDAD MORELIA

PLAN DE ESTUDIOS DE LA LICENCIATURA EN CIENCIA DE MATERIALES SUSTENTABLES

Programa de la asignatura

Espintrónica

Clave:	: Semestre: Campo de conocimiento:			:	No. Créditos:	
	6°-8°			Físic	7	
Carácter: Optativa			Horas		Horas por semana	Total de Horas
Tipo: Teórico-Práctica			Teoría:	Práctica:		
Tipo: Teorico-	Practica		12	3	15	60
Modalidad: Curso			Duración del programa: 4 semanas			

Seriación: No (x) S í () Obligatoria () Indicativa ()

Asignatura antecedente: Ninguna Asignatura subsecuente: Ninguna

Objetivo general:

Describir los elementos básicos de la electrónica basada en el espín de las partículas, es decir, la espintrónica.

Objetivos específicos:

- 1. Describir las interacciones espín-órbita y de intercambio en los sólidos.
- 2. Identificar los mecanismos en que se basan los dispositivos espintrónicos para su funcionamiento.
- 3. Discutir sobre problemas vigentes en la creación y producción de dispositivos espintrónicos.

Índice Temático							
Unidad	Tema	Horas					
Unidad	Tenia	Teóricas	Prácticas				
1	Introducción	3	0				
2	Mecánica cuántica del espín	4	1				
3	La esfera de Bloch	4	1				
4	La matriz de densidad	6	1				
5	Interacción espín-órbita	8	2				
6	Interacción de intercambio	7	2				
7	Dispositivos espintrónicos	6	2				
8	Espintrónica híbrida	6	1				
9	Nuevos sistemas espintrónicos	4	2				
	Total de horas:	48	12				
	Suma total de horas:	60)				

Contenido Temático								
Unidad	Temas y subtemas							
1	Introducción 1.1. Espín. 1.2. Modelo planetario de Bohr y la cuantización del espacio. 1.3. Experimento de Stern-Gerlach. 1.4. Surgimiento de la espintrónica.							
2	Mecánica cuántica del espín 2.1. Matrices de espín de Pauli. 2.2. Ecuación de Pauli y espinores. 2.3. De la ecuación de Pauli a la ecuación de Dirac. 2.4. Ecuación de Dirac independiente del tiempo.							
3	La esfera de Bloch 3.1. El espín y el qubit. 3.2. Concepto de la esfera de Bloch. 3.3. Evolución de un espinor hacia la esfera de Bloch. 3.4. La fórmula de Rabi.							
4	La matriz de densidad 4.1. Concepto de matriz de densidad. 4.2. Propiedades de la matriz de densidad. 4.3. Estados puros y estados mezclados. 4.4. Evolución en el tiempo de la matriz de densidad.							
5	Interacción espín-órbita 5.1. Interacción espín-órbita en un sólido. 5.1.1. Interacción de Rashba. 5.1.2. Interacción de Dresselhaus. 5.2. Subbandas magnetoeléctricas en estructuras con confinamiento cuántico en presencia de la interacción espín-órbita. 5.3. Efecto Hall de espín.							
6	Interacción de intercambio 6.1. Partículas idénticas y el principio de exclusión de Pauli. 6.2. Aproximación de Hartree-Fock. 6.3. Mecanismo de intercambio en ferromagnetismo. 6.4. Hamiltoniano de Heisenberg.							
7	Dispositivos espintrónicos 7.1. Válvula de espín. 7.2. Eficiencia de la inyección de espín. 7.3. Magnetorresistencia gigante. 7.4. Acumulación de espín. 7.5. Inyección de espín a través de una interface ferromagneto/metal. 7.6. Inyección del espín en una válvula de espín.							
8	Espintrónica híbrida 8.1. Transistores a base de espín. 8.2. Transistores de efecto de campo de espín (ESPINFET). 8.3. Funcionamiento de los dispositivos ESPINFETs. 8.4. Transistores basados en magnetorresistencia gigante.							

Nuevos sistemas espintrónicos 9.1. Compuestos medio-metálicos.

Bibliografía básica:

Bandyopadhyay, S. & Cahay, M. (2008). Introduction to spintronics. USA: CRC Press.

Shinjo, T. (Ed.). (2009). *Nanomagnetism and spintronics*. United Kingdom: Elsevier.

Lombardi, G. C. & Nianchi, G. E. (Ed.). (2009). *Spintronics: materials, applications and devices*. New York: Nova Science Publishers.

Tsymbal, E.Y. & Zutic, I. (2012). Handbook of spin transport and magnetism. USA: CRC Press.

Bibliografía complementaria:

Dietl, T., Awschalom, D.D., Kaminska, M. & Ohono, H. (2008). *Spintronics*. USA: Academic Press. Mireles, F. (2008). *Ciencia de materiales y nanotecnología*. (Vol. 4). México: Fondo Editorial Morevallado. Jianbai, X., Weikun, G. & Kai, C. (2011). *Semiconductor spintronics*. Singapore: World Scientific Publishers. Nasirpouri, F. & Nogaret A. (2011). *Nanomagnetism and spintronics*. Singapore: World Scientific Publishers.

Sugerencias didácticas:	aga.a	Mecanismos de evaluación del aprendizaje de los		
Exposición oral (x)		alumnos:		
Exposición audiovisual	(x)	Exámenes parciales	(x)	
Ejercicios dentro de clase	(x)	Examen final escrito	(x)	
Ejercicios fuera del aula	(x)	Trabajos y tareas fuera del aula	(x)	
Seminarios	(x)	Exposición de seminarios por los alumnos	(x)	
Lecturas obligatorias	(x)	Participación en clase	(x)	
Trabajo de investigación	(x)	Asistencia	(x)	
Prácticas de taller o laboratorio	(x)	Seminario	(x)	
Prácticas de campo	()	Otras: Bitácora, reporte del trabajo de		
Uso de tecnologías de la información y		investigación	(x)	
comunicación (videoconferencias,				
documentales, entre otros)	(x)			
Otras: Aprendizaje basado en proyectos	(x)			

Perfil profesiográfico:

Licenciado en Física, de preferencia con Doctorado en un área afín. Con experiencia docente.